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a b s t r a c t 

Domain adaptation aims to learn an adaptive classifier for target data using the labelled source data from 

a different distribution. Most proposed works construct cross-domain classifier by exploring one-sided 

property of the input data, i.e., either geometric or statistical property. Therefore they may ignore the 

complementarity between the two properties. Moreover, many previous methods implement knowledge 

transfer with two separated steps: divergence minimization and classifier construction, which degrades 

the adaptation robustness. In order to address such problems, we propose a u nified c ross-domain classi- 

fication method via g eometric and s tatistical adaptations (UCGS). UCGS models the divergence minimiza- 

tion and classifier construction in a unified way based on structural risk minimization principle and cou- 

pled adaptations theory. Specifically, UCGS constructs an adaptive model by simultaneously minimizing 

the structural risk on labelled source data, using Maximum Mean Discrepancy (MMD) criterion to imple- 

ment statistical adaptation, and flexibly employing the Nyström method to explore the geometric con- 

nections between domains. A domain-invariant graph is successfully constructed to link the two domains 

geometrically. The standard supervised methods can be used to instantiate UCGS to handle inter-domain 

classification problems. Comprehensive experiments show the superiority of UCGS on several real-world 

datasets. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In real-world, the data are generated in large quantities from all

inds of applications. There is an urgent need for effective ways to

nalyze them. Traditional machine learning works are feasible only

hen the training data and testing data come from the same dis-

ribution and enough label information is needed during the train-

ng period. However, in real-world, the distribution of training data

s usually different from that of testing data and the label informa-

ion is scarce for newly-generated data, which make the traditional

ethods invalid [1,2] . As an effective method to analyze the data

ith distribution differences and scarce label information, domain

daptation [3–5] is receiving increasing attention in machine learn-

ng. 
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Typically, domain adaptation mainly involves two different dis-

ribution domains, i.e., a well-labelled source domain (training

ata) and an unlabeled target domain (testing data) [6,7] . It aims

o establish a cross-domain classifier for target data by reusing the

ource domain knowledge. As a powerful learning method, domain

daptation has been applied in many real-world scenes, e.g., image

lassification [8–10] , text categorization [11,12] , sentiment classifi-

ation [13] , and so on. 

One major challenge of domain adaptation is how to discover

he shared knowledge underlying the two domains and use this

nowledge to construct a cross-domain classifier to propagate la-

el information across domains. Many domain adaptation methods

ave been introduced, which can be roughly divided into two cate-

ories [14] , including instance reweighting adaptation [15–17] and

eature representation adaptation [18–21] . 

Instance reweighting adaptation involves computing the weight

f input data by their importance to mitigate the distribution

ivergence. Huang et al. [15] proposed a kernel mean match-

ng (KMM) method to reduce the cross-domain discrepancy by

eweighting the source samples so that the means of source and

https://doi.org/10.1016/j.patcog.2020.107658
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target samples get closer in a Reproducing Kernel Hilbert Space

(RKHS). Chu et al. [16] proposed the Selective Transfer Machine

(STM) to reweights the source samples to form a new distribu-

tion closer to the target distribution. Then, the classifier trained

on reweighted source samples can be applied to target samples. Li

et al. [17] proposed another reweighting approach from the per-

spective of target data. It calculates the importance of target data

according to their signed distance to the domain separator. This

reweighting strategy enables the target domain to be closer to the

source domain. Moreover, it employs the manifold regularization

to propagate labels from the target samples with large weights to

samples with small weight. 

Feature representation adaptation focuses on finding a proper

feature transformation or subspace to reduce the distribution mis-

match. Long et al. [18] proposed a Transfer Kernel Learning (TKL)

method to learn a domain-invariant kernel using the Nyström

method, and then a kernel SVM classifier is built based on labelled

source data and applied to target data. Herath et al. [19] proposed

the Invariant Latent Space (ILS) method to match the statistical

properties across domains. It aims to find a space where the data

from the same class come closer while the data from different

classes are well separated. Liang et al. [20] introduced a Progres-

sive leArning with Confidence-wEighted Targets (PACET) method

to learn a projection matrix. PACET uses Maximum Mean Discrep-

ancy (MMD) to measure the cross-domain distribution divergence

and adopts the idea of Linear Discriminant Analysis (LDA) to pre-

serve the discriminative information of domain data. Zhang et al.

[21] introduced a Guide Subspace Learning (GSL) method to learn

two projection matrices for source and target domains, respec-

tively. Two domain data can be mapped into a shared subspace. To

further minimize the distribution gap, GSL forces the target data to

be linearly represented by source data in the subspace. 

Although many different strategies have been proposed to im-

plement knowledge transfer across domains. Two limitations are

existing in most of the proposed domain adaptation methods. 1)

Almost all these proposed methods extract common knowledge

only by exploiting one aspect of data property, i.e., either statisti-

cal or geometric property. However, statistical and geometric prop-

erties are complementary to each other. Thus, exploring these two

properties together is crucial to discover more inter-domain con-

nections; 2) Most of these works design transfer learning method

by exploring two separated learning strategies: distribution mis-

match minimization using instance reweighting or feature transfor-

mation and then training a standard classifier based on the trans-

formed source data to propagate label information to target do-

main. However, exploring these learning strategies independently

will degrade the robustness of the adaptive model. 

To handle these limitations, in this paper, we propose a uni-

fied cross-domain classification method via geometric and statis-

tical adaptations (UCGS) based on the structural risk minimiza-

tion principle and coupled adaptations theory. Specifically, UCGS

learns an adaptive model by minimizing the structural risk on la-

belled source data and simultaneously using the Maximum Mean

Discrepancy (MMD) criterion to formalize the cross-domain distri-

bution divergence from the statistical perspective. Through mini-

mizing the MMD distance, the means of the source and target dis-

tributions get closer. Meanwhile, UCGS flexibly employs the Nys-

tröm method to explore the geometric connections between source

and target graphs. More specifically, UCGS firstly utilizes the Nys-

tröm method to build a transferable graph L ∗ based on the tar-

get graph eigensystem. Therefore, L ∗ shares the similar geomet-

ric property as the target domain. Then, UCGS uses the Nyström

approximation error to measure the distance between the trans-

ferable graph L ∗ and the ground truth source graph L s to formal-

ize the inter-domain geometric differences. Through minimizing

this cross-domain approximation error, a domain-invariant graph
 † is finally constructed to bridge the source and target domains.

he standard machine learning methods can be used to instantiate

CGS model to deal with cross-domain classification problems. 

The main contributions of this paper can be summarized as fol-

ows: 

• To deal with the distribution divergence between domains, we

propose a domain adaptation model UCGS based on the cou-

pled adaptations theory. UCGS combines the inter-domain dis-

tribution divergence reduction and classifier construction in a

unified model for robust transfer learning. 
• UCGS employs MMD to formalize the distribution divergence

statistically. The means of the data distributions are well

matched through minimizing MMD. 
• Furthermore, UCGS flexibly employs the Nyström method to

explore the inter-domain geometric connections and uses the

Nyström approximation error to quantify the inter-domain ge-

ometric differences. A domain-invariant graph is finally con-

structed to bridge two domains geometrically. 
• Comprehensive experiments on real-world datasets verify the

superiority of UCGS. 

The subsequent paper is organized as follows. Some related

orks are discussed in Section 2 . We introduce the general UCGS

pproach, the learning algorithms, and the analysis of computa-

ional complexity in Section 3 . Experiment results and a brief

nalysis are illustrated in Section 4 . Conclusions are described in

ection 5 . 

. Related works 

In this section, we review some proposed works that are most

elated to UCGS. UCGS belongs to feature representation adapta-

ion, which can be discussed with following concepts. 

.1. Property exploitation 

These domain adaptation methods aim to extract common

nowledge underlying different domains by exploiting the specific

f input data, e.g., statistical property [22,23] , geometric property

24] , or both [25] . 

Maximum Mean Discrepancy (MMD) [26] can be used to for-

alize the divergence of two distributions p 1 and p 2 based on the

xpectations of the two datasets X s = { x s 
i 
} n s 

i =1 
and X t = { x t 

j 
} n t 

j=1 
. X s

nd X t are generated from distributions p 1 and p 2 , respectively.

athematically, MMD can be expressed as Eq. (1) . 

MD ( X s , X t ) = ‖ 

1 
n s 

∑ n s 
i =1 

φ
(
x s 

i 

)
− 1 

n t 

∑ n t 
j=1 

φ
(
x t 

j 

)‖ H (1)

here H represents a Reproducing Kernel Hilbert Space (RHKS),

( ∗) is the nonlinear feature mapping function. MMD can cap-

ure both first- and high-order statistics of data. The means and

oments of data distributions between domains can be matched

y minimizing MMD [18] . It has been widely exploited in transfer

earning. 

Wang et al. [22] put forward a Balance Distribution Adapta-

ion (BDA) method to introduce a dynamic distribution alignment

trategy. BDA uses MMD to measure the divergence of both the

arginal and conditional distributions and sets a parameter to

uantify the importance of the marginal and conditional distribu-

ions. 

 ( D s , D t ) ≈ (1 − μ) D ( P ( x s ) , P ( x t ) ) + μD ( L ( y s | x s ) , L ( y t | x t ) ) 
(2)

here P ( ∗) represents marginal distribution of both domains, L ( ∗)

epresent conditional distribution. D ( ∗) means distribution diver-

ence measured by MMD, μ is the dynamic parameter to account

or the importance of P ( ∗) and L ( ∗). 
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Li et al. [23] proposed a progressive alignment method to learn

 domain-shared feature space by adopting the idea of dictionary

earning. To align the cross-domain distribution, it employs MMD

o measure the divergence between the sparse representations of

he source and target domain samples. 

in 

P,B,S 
‖ P X − BS‖ 

2 
F + tr 

(
S(αM + βL ) S T 

)
+ γ

∑ 

i 

‖ 

s i ‖ 1 + ρ‖ P ‖ 

2 
F (3)

here P is the projection matrix, B is the shared codebook, and S

s a set of sparse representations corresponding to the input data

. M represents MMD distance and L is the Laplacian matrix used

o preserve the local property of domains. α, β , γ , and ρ are reg-

larization parameters. 

Gong et al. [24] proposed the Geodesic Flow Kernel (GFK)

ethod, which takes advantage of the low-dimension intrinsic

tructure of input data. It integrates an infinite number of sub-

paces that transit smoothly along the geodesic flow from source

omain to target domain. The distribution changes can be expres-

ively modelled by these subspaces. A geodesic flow kernel can be

athematically constructed using all these subspaces. 

 z ∞ 

i , z ∞ 

j 〉 = 

∫ 1 

0 
( �( t ) x i ) 

T 
(
�( t ) x j 

)
dt = x T i Gx j (4)

here �( ∗) represents subspace, z ∞ ∗ represents the infinite-

imensional projection corresponding to input sample x ∗ , and G is

 positive semidefinite matrix. 
Zhang et al. [25] proposed Joint Geometric and Statistical Align-

ent (JGSA) to learn two projection matrices. The source and tar-
et data are projected into the low-dimensional subspaces where
he distribution divergence is reduced geometrically and statisti-
ally. Then, the classifier built on the mapped source data is used
o recognize the mapped target data. 

ax 
α( T arget V ar. ) + β( inter _ class V ar. ) 

( Dist ribut ion shi f t ) + γ ( Subspace shi f t ) + β( intra _ class V ar. ) 

(5) 

where the “Distribution shift ” is measured using MMD criterion, 

nd “Subspace shift ” is quantified using the divergence between

wo domain projections. Minimizing such two items enables the

wo domains to be aligned statistically and geometrically. “Tar-

et Var. ” represents the variance of target domains, “inter_class

ar. ” and “intra_class Var. ” represent the between class variant and

ithin class variant of source date, respectively. 

There are two limitations existing in these proposed works. 1)

ost of the proposed works focus on exploring one-sided prop-

rty of input data. They ignore the complementarity between the

ifferent properties. 2) Although JGSA considers both statistical

nd geometric adaptations. JGSA explores the geometric connec-

ions between domains just by measuring the distance between

wo domain transformation matrices, which is inadequate for bet-

er connecting two domain geometrically. Moreover, JGSA sepa-

ates the divergence minimization and classifier construction into

wo independent ways, which degrades the robustness of knowl-

dge transfer. Different from these proposed works, UCGS takes

ull advantage of the complementarity between the statistical and

eometric properties of input data to discover more comprehen-

ive inter-domain connections. Moreover, UCGS combines the di-

ergence minimization and classifier construction into a unified

ramework to enhance the robustness of transfer learning. 

.2. Nyström method 

The Nyström method [27–29] is originally proposed to solve the

ollowing integral problem: 
 

p 
(
x t 

)
φi 

(
x t 

)
k 
(
x s , x t 

)
dt = λi φi ( x 

s ) (6) 
here k ( ·) is a kernel function. p ( ·) is probability density function.

i and φi ( ·) are eigenvalues and eigenfunctions of Eq. (6) . 

Given a dataset X T = { x t 
i 
} n t 

i =1 
sampled from the distribution p ( x t ),

nd the corresponding kernel matrix K T . Eq. (6) can be empirically

pproximated as Eq. (7) . 

1 
n t 

∑ n t 
j=1 

k 
(
x s , x t 

j 

)
φi 

(
x t 

j 

)
� λi φi ( x 

s ) (7) 

The eigenfunction φi ( x 
s ) at new instance x s can be estimated as

ollows: 

i ( x 
s ) � 

∑ n t 
j=1 

k ( x s , x t j ) φi ( x t j ) 
n t λi 

(8) 

iven another new dataset X S = { x s 
j 
} n s 

j=1 
sampled from the same

istribution of X T . Evaluating the eigenfunction on X S lead to fol-

owing discrete approximation: 

S � K ST �T 	
−1 
T 

(9) 

here K ST ∈ R n s ×n t is cross-dataset kernel matrix, �T ∈ R n t ×n t are

igenvectors of K T and 	T are eigenvalues of K T , i.e., K T =
T 	T �

T 
T 

. 

Based on Eq. (9) , the Nyström method can be extended to ap-

roximate kernel matrix K S as follows: 

 S � �S 	T �
T 
S = K ST 

(
�T 	

−1 
T 

�T 
T 

)
K T S = K ST K 

−1 
T 

K T S (10) 

Attracted by properties of the Nyström method, UCGS flexibly

mploys it to explore the geometric connections between source

nd target domains, and finally constructs a domain-invariant

raph to link two domains geometrically. 

. Unified cross-domain classification via geometric and 

tatistical adaptations 

In this section, we firstly introduce the problem definition, and

hen we present the proposed UCGS. At last, we analyze the com-

utational complexity. 

.1. Problem definition 

Given a labelled source domain D s = { (x s 
i 
, y s 

i 
) } n s 

i =1 
and an unla-

eled target domain D t = { (x t 
j 
) } n t 

j=1 
. Target labels y t 

j 
are only avail-

ble during testing period. Both domains are generated from an m

imensional feature space but have different marginal and condi-

ional distributions, i.e., p s ( x 
s ) 
 = p t ( x 

t ) and q s ( y 
s | x s ) 
 = q t ( y 

t | x t ). The

oal of UCGS is to learn an adaptive classifier f for target domain.

able 1 summarizes the frequently used notations. 

.2. General framework 

We design UCGS framework with the structural risk minimiza-

ion principle and the coupled adaptations theory. Specifically, we

inimize the structural risk on labelled source data and employ

he two complementary properties (i.e., statistical and geometric

roperties) of the input data to discover comprehensive connec-

ions across domains. The general objective function is formulated

s follows. 

f = argmin f∈ H K 

n s ∑ 

i =1 


 
(

f 
(
x s i 

)
, y s i 

)
+ λ‖ f‖ 

2 
K + γ D f,K ( J s , J t ) 

+ μG K ( D s , D t ) (11) 

here K is the kernel function, λ, γ , and μ are regularization pa-

ameters. f is the adaptive classifier. ‖ f‖ 2 
K 

represent the squared

orm of f in kernel space. 
 
(

f 
(
x s 

i 

)
, y s 

i 

)
represents the loss on la-

elled source data, D f,K ( J s , J t ) represents statistical adaptation and

 K ( D s , D t ) represents geometric adaptation. 

The details of each part are discussed in the following subsec-

ions. 
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Table 1 

Notations and descriptions. 

Notations Description Notations Description 

n s , n t Sample numbers of D s and D t �, 	 Eigenvector, eigenvalue matrix 

X, Y Data, label matrix W Affinity matrix 

K Kernel matrix ξ Damping factor 

M MMD matrix λ, γ , μ Regularization parameters 

L Graph Laplacian matrix m, C Shared feature classes 
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3.2.1. Structural risk minimization 

The goal of UCGS is to learn an adaptive classifier for the target

domain D t . Firstly, we build a standard classifier f on the labelled

source domain D s . Suppose the prediction classifier be f = ω 

T φ( x ) ,

where ω is the classifier parameter and φ is the feature mapping

function that projects the original features into a Hilbert space. We

apply the prediction classifier on the labelled source data based on

the structural risk minimization principle as follows. 

f = argmin f∈ H K 
∑ n s 

i =1 

 
(

f 
(
x s 

i 

)
, y s 

i 

)
+ λ‖ f‖ 

2 
K (12)

where 
 
(

f 
(
x s 

i 

)
, y s 

i 

)
is prediction loss on labelled source data. H K 

is a set of classifiers in Hilbert space. ‖ f‖ 2 
K 

is used to control the

complexity of classifier and λ is the regularization parameter. 

3.2.2. Statistical adaptation 

In order to enable the prediction classifier f to be adaptive to

the target domain, one major issue is to minimize the mismatch

between the joint probability distributions J s and J t . According to

the probability theory, J = p × q . Therefore, we try to simultane-

ously minimize the marginal (i.e., p s , p t ) and conditional (i.e., q s ,

q t ) distributions mismatches between domains. 

Firstly, we adopt MMD [26,30] criterion as the marginal dis-

tribution divergence measurement. According to Eq. (1) , we have

the following objective to compute the marginal distribution di-

vergence. 

D f,K ( p s , p t ) = ‖ 

1 
n s 

∑ n s 
i =1 

f 
(
x s 

i 

)
− 1 

n t 

∑ n t 
j=1 

f 
(
x t 

j 

)‖ 

2 
H 

(13)

where f = ω 

T φ( x ) , n s and n t are the numbers of domain data, H

represents the RKHS. 

Secondly, we minimize the conditional distribution divergence

across domains. Since no label information is available in target

domain. It is impossible to directly to calculate the divergence be-

tween q s 
(
y s 

i 
| x s 

i 

)
and q t 

(
y t 

i 
| x t 

i 

)
. we follow the idea [31] to explore

the divergence between q s 
(
x s 

i 
| y s 

i 

)
and q t 

(
x t 

i 
| y t 

i 

)
instead. In order to

compute q t 
(
x t 

i 
| y t 

i 

)
, we use the pseudo target labels, which are pre-

dicted by the standard supervised classifier trained on the labelled

source data. Some pseudo labels may be incorrect due to the dis-

tribution mismatch. But in this paper, we assume that the pseudo

class centroids calculated by them may not be far from the true

class centroids. Therefore, we can use both true source labels and

pseudo target labels to compute the conditional MMD of each class

c ∈ { 1 , . . . , C } and make the intra-class centroids of two distribu-

tions closer by minimizing conditional MMD as follows: 

D 

c 
f,K ( q s , q t ) == ‖ 

1 
n c s 

∑ 

x s 
i 
∈ D c s f 

(
x s 

i 

)
− 1 

n c t 

∑ 

x t 
i 
∈ D c t f 

(
x t 

i 

)‖ 

2 
H 

(14)

where D 

c 
s is the source data set belonging to class c , similarly, D 

c 
t 

is the target data set belonging to class c . n c s = | D 

c 
s | represents the

number of source samples belonging to class c , similarly, n c t = 

∣∣D 

c 
t 

∣∣
represents the number of target samples belonging to class c . 

Taking Eqs. (13) and (14) into consideration simultaneously, we

induce the following Eq. (15) : 

D f,K ( J s , J t ) = D f,K ( p s , p t ) + 

∑ C 
c=1 D 

c 
f,K ( q s , q t ) (15)

Through optimizing Eq. (15) , both the means of the marginal and

conditional distributions between domains get closer. 
.2.3. Geometric adaptation 

By optimizing Eq. (15) , the data means of different domains can

e matched. Moreover, we expect that the geometric connections

eweent domains can be further exploited for better knowledge

ransfer. In other words, requiring source and target data to follow

he similar geometric property, it naturally requires them to have

he similar geometric structure, i.e., L s � L t . However, the data-

ased graph Laplacian has different dimensions for different do-

ains often have different numbers of samples. Therefore, we can-

ot directly compare the divergence between L s and L t . In UCGS,

e employ the Nyström method to address this problem flexibly. 

Specifically, we firstly utilize the Nyström method to build a

ransferable graph Laplacian L ∗ based on target graph eigensystem.

otably, according to the original Nyström method, L ∗ shares the

imilar geometric property of target graph and the same dimension

f source graph. Therefore, L ∗ can replace L t to compare with L s .

hen, we introduce the Nyström approximation error to compare

he divergence between L ∗ and L s . Finally, through minimizing the

pproximation error, we can achieve a domain-invariant graph as

 geometric bridge to link two domains. The details are presented

n the following part. 

Firstly, we build source graph Laplacian as L s = D 

s − W 

s , where

 

s is the affinity matrix which can be computed using W 

s 
i j 

=

xp( 
−‖ x s 

i 
−x s 

j 
‖ 2 

2 

2 σ 2 ) , σ is bandwidth. D 

s is diagonal matric given by

 

s 
ii 

= 

∑ n s 
j=1 

W 

s 
i j 

. Similarly, L t = D 

t − W 

t . 

Applying eigendecomposition on L t to obtain the eigensystem

 �t , 	t }, i.e., L t = �t 	t 
(
�t 

)T 
. And then we achieve the estimated

igensystem of the source graph L s based on the Nyström method

s follows: 

∗ � L st �t 
(
	t 

)−1 
(16)

here L st is the cross-domain graph, which can be computed by

 

st = L s + t ( 1 : n s , n s + 1 : n s + n t ) . L s + t is the graph Laplacian on all

omain data. It can be computed by L s + t = D 

s + t − W 

s + t , W 

s + t 
i j 

=
xp( 

−‖ x i −x j ‖ 2 2 

2 σ 2 ) and D 

s + t 
ii 

= 

∑ n t + n s 
j=1 

W 

s + t 
i j 

. 

According to the original Nyström method, the source graph

an be approximated using �∗ and 	t like Eq. (10) . However,

q. (10) can be established only when two datasets enjoy the same

istribution, which is invalid in domain adaptation. In other words,

f we employ the Nyström method to approximate the source

raph, there must exist an unavoidable approximation error. How-

ver, this discussion inspires us that the Nyström approximation

rror reflects the distribution difference. If we seek a geometric

raph minimizing the Nyström approximation error, such a geo-

etric graph is naturally invariant to cross-dataset [18] . 

Therefore, we relax 	t to be free values 	∗ and build a trans-

erable graph L ∗ based on { 	∗, �∗}, i.e., L ∗ = �∗	∗( �∗) T . Notably,

 

∗ is build based on target graph eigensystem, therefore, L ∗ shares

he similar geometric property of target graph L t . On the other

and, L s is constructed based on source domain and captures the

eometric property of source data. Thus, the Nyström approxima-

ion error between L ∗ and L s properly represents the geometric

ivergence between domains. Moreover, L ∗ has the same dimen-

ion as source graph L s and can be used to directly compare with
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s . We minimize the Nyström approximation error to reduce the

ross-domain geometric divergence as follows: 

in 	∗ = ‖ L ∗ − L s ‖ 

2 
F = ‖ �∗	∗( �∗) T − L s ‖ 

2 
F 

s.t. λi ≥ δλi +1 , i = 1 , . . . , n t − 1 

λi ≥ 0 , i = 1 , . . . , n t 

(17) 

here 	∗ = diag { λ1 , . . . , λn t } are n t eigenvalues. δ is the damping

actor that allows the larger eigenvectors to contribute more to the

nowledge transfer [18] . Reformulate Eq. (17) into a matrix form:

in ν νT Qν − 2 ρT ν
Uν ≥ 0 ν ≥ 0 

(18) 

here ν = 

(
λ1 , . . . , λn t 

)
, Q = 

(
( �∗) T �∗)

�

(
( �∗) T �∗),

= diag 
(
( �∗) T L s �∗), U = I − δ Ī , I ∈ R 

n t ×n t is the identity matrix,

 ̄is the matrix with the nonzero items Ī i,i +1 = 1 , i = 1 , . . . , n t − 1 . 

Eq. (18) is a Quadratic Programming problem and can be effec-

ively solved by the convex optimization package [32] . 

Through optimizing Eq. (18) , we can obtain the optimal eigen-

alue matrix 	† , which can be used to construct the domain-

nvariant graph L † on all domain data as follows: 

 

† = 

[ 

�∗	† ( �∗) T �∗	† 
(
�t 

)T 

�t 	† ( �∗) T �t 	† 
(
�t 

)T 

] 

(19) 

The domain-invariant geometric graph, i.e. L † , preserves the

tructure information of target graph L t through the eigenvector

atrices �∗ and �t . Meanwhile, L † flexibly reduces the distribu-

ion divergence through the optimal eigenvalue matrix 	† , which

s aligned across domains. 

Therefore, the geometric adaptation is computed as Eq. (20) . 

 K ( D s , D t ) = 

∑ n s + n t 
i, j=1 

f ( x i ) L 
† 
i j 

f 
(
x j 

)
(20) 

.3. Learning algorithm 

Without loss of generality, we extend RLS under the UCGS

odel with the squared loss 
 
(

f 
(
x s 

i 

)
, y s 

i 

)
= 

(
y s 

i 
− f 

(
x s 

i 

))2 
. Specifi-

ally, according to “Representer Theorem” [33] , the adaptive clas-

ifier can be represented as f ( x ) = αT K where K ∈ R ( n s + n t ) ×( n s + n t ) 

s kernel matrix induced by φ, which can be computed by K i j =
 ( x i , x i ) , α ∈ R ( n s + n t ) ×C is parameter matrix of f . 

Reformulate Eq. (15) by incorporating f ( x ) = αT K, we obtain: 

 f,K ( J s , J t ) = t r 
(
αT K M 0 K α

)
+ 

C ∑ 

c=1 

t r 
(
αT K M c K α

)
= tr 

(
αT K MK α

)
(21) 

here M = 

∑ C 
c=0 M c , M c are MMD matrices computed as follows:

( M c ) i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 

( n c s ) 
2 , x i , x j ∈ D 

c 
s 

1 

( n c t ) 
2 , x i , x j ∈ D 

c 
t 

− 1 
n c s n 

c 
t 
, 

{
x i ∈ D 

c 
s , x j ∈ D 

c 
t 

x j ∈ D 

c 
s , x i ∈ D 

c 
t 

0 , otherwise 

(22) 

 0 can be computed with Eq. (22) with n 0 s = n s , n 0 t = n t , D 

0 
s = D s 

nd D 

0 
t = D t . 

Similarly, reformulate Eq. (20) by incorporating f ( x ) = αT K, we

an get: 

 K ( D s , D t ) = tr 
(
αT K L † K α

)
(23) 

Plug Eqs. (21) and 23 into UCGS framework Eq. (11) , we get the

nal objective for UCGS: 

= argmin α‖ 

(
Y − αT K 

)
E‖ 

2 
F + λtr 

(
αT Kα

)

+ tr 
(
αT K 

(
γ M + μL † 

)
Kα

)
(24) 

here E = diag 
(
1 , . . . , 1 n s , 0 . . . , 0 n t + n s 

)
∈ R ( n s + n t ) ×( n s + n t ) 

ith the first n s entries as 1 and the rest as 0. Y =
y s 

1 
, . . . y s n s , 0 . . . , 0 n t + n s 

]
∈ R C×( n s + n t ) is the label matrix. 

The derivative of Eq. (24) is set to 0, then we get the optimal

lassifier parameters α. 

= 

((
E + γ M + μL † 

)
K + λI 

)−1 
EY T (25) 

The learning algorithm is summarized in Algorithm 1 . 

lgorithm 1 RLS classifier via UCGS. 

nput: source data X , source label Y , parameter δ, λ, γ , μ;Gaussian

kernel function k ; 

1: Compute the graph Laplacian L s , L t and L st ; 

2: Eigen-decompose L t to obtain 

{
�t , 	t 

}
; 

3: Approximate the eigensystem �∗; 

4: Solve the optimal problem (18) to obtain the optimal 	† ; 

5: Construct the domain-invariant graph L † by (19); 

6: Use kernel function k to compute the kernel matrix K; 

7: Construct MMD matrix M by (22); 

8: Compute α for UCGS by (25); 

utput: Return the adaptive classifier f ; 

.4. Computational complexity 

Computing Laplacian matrices needs O ( m ( n s + n t ) ) , eigende-

omposing L t costs O 

(
n 3 t 

)
, approximating the eigensystem �∗ re-

uires O 

(
n s n 

2 
t 

)
, solving the optimal problem (18) needs O 

(
2 n 3 t 

)
and

onstructing the domain-invariant graph L † costs O 

(
n t ( n s + n t ) 

2 
)
.

he overall complexity of constructing the domain-invariant graph

s O 

(
n 3 t + n s n 

2 
t + n t ( n s + n t ) 

2 
)
. 

Constructing the kernel matrix K and MMD ma-

rix M require O 

(
C ( n s + n t ) 

2 
)
, computing α for

CGS costs O 

(
( n s + n t ) 

3 
)
. The overall complexity is

 

(
n 3 t + n s n 

2 
t + n t ( n s + n t ) 

2 + C ( n s + n t ) 
2 + ( n s + n t ) 

3 
)
. 

. Experiments 

In this section, we run experiments on several popular datasets

o demonstrate the performance of UCGS, and then we will do a

rief experiment analysis. 

.1. Data description 

PIE [34] is a face dataset, which totally includes 41,368 face im-

ges with 68 classes. These face images are captured with differ-

nce poses, illumination, and expressions. In this experiment, we

dopt the sub-datasets released by Long et al. [31] . Specifically, five

ubsets with different poses are selected. That is PIE1 (left pose),

IE2 (upward pose), PIE3 (downward pose), PIE4 (frontal pose),

nd PIE5 (right pose). Each pose contains face image with differ-

nt illumination and expressions. Selecting two different subsets

s two different domain, we can construct 20 transfer tasks, e.g.,

IE1 → PIE2, ..., PIE5 → PIE4. 

MSRC (M) [35] dataset includes 4323 images and VOC2007 (V)

36] (the training and validation subsets) dataset includes 5011 im-

ges. Both datasets share 6 classes, including “aeroplane”, “bicycle”,

bird”, “car”, “cow”, and “sheep”. In this experiment, we adopt the

rocessed datasets released by Mingsheng et al. [35] . Specifically,

269 sharing images of MSRC and 1530 sharing images of VOC are

xtracted from two datasets to form two domains. Thus, we con-

truct two transfer tasks, i.e., M → V and V → M. 
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Table 2 

Notations and descriptions. 

Dataset Examples Features Classes Domains 

PIE 11,554 1024 68 PIE1... PIE5 

MSRC 1265 240 6 M 

ImageNet 7341 4096 5 I 

VOC2007 5011 4096(240) 5(6) V 
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ImageNet (I) is another popular image dataset and it shares 5

classes with VOC2007 (V), including “bird”, “cat”, “chair”, “dog”,

and “person”. In this experiment, we adopt the datasets released

by Wang et al. [37] . Specifically, 7341 sharing images and 3376

sharing images are selected from ImageNet and VOC2007 datasets,

respectively. Finally, we can build two transfer tasks, i.e., I → V

and V → I. 

The statistics of datasets are summarized in Table 2 . 

4.2. Experiment setup 

4.2.1. Comparison methods 

We compare UCGS with following comparison methods: 

• 1-Nearest Neighbor Classifier (1NN) and SVM 

• Geodesic Flow Kernel (GFK) [24] 
• Transfer Component Analysis (TCA) [38] 
• Joint Distribution Adaptation (JDA) [31] 
• Adaptation Regularization based Transfer Learning (ARTL) [39] 
• Joint Geometrical and Statistical Alignment (JGSA) [25] 
• Manifold Embedded Distribution Alignment (MEDA) [37] 
• Guide Subspace Learning (GSL) [21] 

Specifically, 1NN and SVM are traditional methods while GFK,

TCA , JDA , ARTL, JGSA , MEDA , and GSL are transfer learning ap-

proaches. Specifically, TCA is a representative method that uses

MMD to measure the distribution mismatch. By minimizing the

MMD distance, some shared components can be extracted to form

a shared subspace of the two domains. JDA aims to build a shared

subspace via adapting the marginal distribution and conditional

distribution miamatches across domains. ARTL induces an adap-

tive classifier by minimizing MMD distance between domains and

using the Laplacian matrix to make full use of the knowledge of

the marginal distribution for better transfer ability. MEDA learns

a domain-invariant classifier by dynamically aligning the marginal

and conditional distribution between source and target domain. 

4.2.2. Implementation details 

1NN and SVM are trained on labeled source data and tested

on unlabeled target data. GFK, TCA , JDA , JGSA , and GSL are run

on the input domain data as the distribution divergence mini-

mization step, then the standard supervised classifier is trained

on the adapted source data and used to predict unlabeled tar-

get data. While MEDA and ARTL model the distribution divergence

minimization and classifier learning in a unified objection. Both

methods directly obtain an adaptive classifier for target domain.

Different from GFK, TCA , JDA , JGSA , and GSL, UCGS unifies the

distribution divergence minimization and classifier construction in

one step, and obtains an adaptive classifier directly by optimizing

the objective function (24) . Although MEDA and ARTL also model

the distribution divergence minimization and classifier learning in

a unified objection, they only consider the statistical adaptation

while UCGS takes both statistical and geometric adaptations into

account. This allows UCGS to establish inter-domain connections

more comprehensively and extract more inter-domain sharing in-

formation. 

The optimal parameters of all baseline methods are set accord-

ing to their original papers, respectively. There are three main pa-

rameters in UCGS including classifier complexity control parameter
, statistical adaptation parameter γ , and geometric adaptation pa-

ameter μ. Under the experiment settings, it is impossible to tune

he optimal parameters using cross validation since there is no la-

el information in target domain. Therefore, we evaluate UCGS on

ll transfer tasks by empirically tuning the parameters in a wide

ange and report the best results. Moreover, in the following pa-

ameter sensitivity analysis, we show that UCGS can obtain stable

erformance under a wide range parameter values. In the compari-

on experiments, for PIE dataset, we set λ = 0 . 1 , γ = 10 , μ = 1 ; for

SRC and VOC2007 datasets, λ = 0 . 5 , γ = 0 . 1 , μ = 0 . 7 ; for Ima-

eNet and VOC2007, λ = 0 . 1 , γ = 0 . 01 , μ = 0 . 001 . Additionally, we

x the damping factor δ = 1 . 1 during the experiment and choose

aussian kernel with the form W 

i j 
= exp (−‖ x 

i 
− x 

j 
‖ 2 

2 
/ 2 σ 2 ) to con-

truct the graph Laplacian matrix and fix σ = 1 in this paper. 

We use the classification accuracy [40–42] on target data as the

valuation metric. 

ccuracy ( % ) = 

| f ( x t i ) = y t i | 
| D t | × 100 

(26)

here f 
(
x t 

i 

)
is the prediction of target sample x t 

i 
and y t 

i 
is the true

abel of x t 
i 
. 

.3. Experimental results and analysis 

In this section, the average accuracy of UCGS method and other

omparison methods on different transfer learning tasks are illus-

rated in Tables 3 and 4 . The best results are shown in bold. 

From the Tables, we can make the following analysis. 

Firstly, in Table 3 , UCGS method has outperformed, or achieved

omparable performance than the comparison methods. The aver-

ge classification accuracy of UCGS on PIE datasets is 67.27%. The

erformance improvement is 4.53% compared to the best compari-

on method JGSA. However, in some transfer tasks, the recognition

ccuracy of UCGS is not as good as other comparison methods. We

hink the main reasons are as follows. 1) PIE is more challenging

han other datasets, since each of its subsets consists of 68 classes.

herefore, it is more difficult to propagate source label information

o target domain. 2) Moreover, when we use MMD to measure the

ifferences between the conditional distributions, since no labeled

ata in the target domain are available, we propose to use the

seudo target labels predicted by the supervised classifier trained

n the source domain. There are some the pseudo target labels

ay be incorrect due to substantial distribution divergence. We

hink this is the main reason why UCGS does not perform well in a

ew transfer tasks. However, in this experiment, UCGS has achieve

n impressive performance in most transfer tasks. Although it is

ot optimal in a few tasks, it still achieves the accuracy compara-

le to that of the comparison methods. 

In Table 4 , UCGS achieves much better performance than the

omparison methods on MSRC, VOC, and ImageNet datasets. The

verage accuracy of UCGS is 62.08%. The performance improves

.46% compared to the best baseline method GSL. These results are

btained from a large number of datasets, therefore, it convincingly

emonstrates that UCGS can construct the robust adaptive classi-

er to handle the cross-domain classification problems. 

Secondly, 1NN and SVM methods perform poorly in most of

ransfer tasks. It is mainly because both standard methods are fea-

ible under a strict assumption that is the training data and the

esting data are generated from the same distribution. However,

he identical-distribution assumption does not hold in real-world

pplications. Therefore, both methods achieve unsatisfactory re-

ults for they ignore the distribution divergence across domains. 

Thirdly, UCGS significantly outperforms GFK, which mainly fo-

uses on the geometric property of input data. Similarly, UCGS also

chieve much better accuracy than TCA , JDA , ARTL, MEDA , and GSL

hich mainly explore the statistical property of input data. The
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Table 3 

Average classification accuracy (%) on PIE datastes. 

Tasks 1NN SVM GFK TCA JDA ARTL JGSA MEDA GSL OURS 

PIE1 → PIE2 26.09 33.52 26.15 40.76 58.81 49.36 52.73 38.29 50.15 65.12 

PIE1 → PIE3 26.59 43.69 27.27 41.79 54.23 49.94 51.84 43.93 59.68 62.81 

PIE1 → PIE4 30.67 61.28 31.15 59.63 84.50 72.33 73.72 64.67 84.81 79.69 

PIE1 → PIE5 16.67 36.46 17.59 29.35 49.75 42.65 52.39 34.74 54.72 51.29 

PIE2 → PIE1 24.49 42.05 25.24 41.81 57.62 50.54 64.26 46.25 48.02 62.61 

PIE2 → PIE3 46.63 41.85 47.37 51.47 62.93 57.78 58.88 50.43 42.16 63.91 

PIE2 → PIE4 54.07 65.64 54.25 64.73 75.82 80.26 70.71 71.16 73.36 80.84 

PIE2 → PIE5 26.53 34.13 27.08 33.70 39.89 43.57 49.02 37.25 37.50 55.27 

PIE3 → PIE1 21.37 49.58 21.82 34.69 50.96 52.91 64.89 45.95 55.34 60.02 

PIE3 → PIE2 41.01 42.91 43.16 47.70 57.95 56.91 59.91 48.68 53.10 62.49 

PIE3 → PIE4 46.53 67.98 46.41 56.23 68.45 76.27 72.63 72.90 73.27 78.13 

PIE3 → PIE5 26.23 42.40 26.78 33.15 39.95 49.94 57.72 45.77 55.82 58.27 

PIE4 → PIE1 32.95 66.96 34.24 55.64 80.58 80.22 74.73 69.99 86.46 82.62 

PIE4 → PIE2 62.68 62.06 62.92 67.83 82.63 83.33 76.24 74.52 78.94 84.84 

PIE4 → PIE3 73.22 70.71 73.35 75.86 87.25 82.41 67.89 82.05 81.07 83.09 

PIE4 → PIE5 37.19 54.23 37.38 40.26 54.66 60.29 63.05 54.78 72.67 68.92 

PIE5 → PIE1 18.49 46.16 20.35 26.98 46.46 55.43 63.99 38.51 45.62 58.07 

PIE5 → PIE2 24.19 34.81 24.62 29.90 42.05 43.52 54.02 37.32 39.47 54.92 

PIE5 → PIE4 28.31 47.98 28.49 29.90 53.31 54.72 59.87 43.50 50.98 61.69 

PIE5 → PIE4 31.24 59.12 31.33 33.64 57.01 64.37 66.39 53.30 66.96 70.71 

Avg. 34.76 50.18 35.35 44.75 60.24 60.34 62.74 52.70 60.51 67.27 

Table 4 

Average classification accuracy (%) on MSRC, VOC, and ImageNet datastes. 

Tasks 1NN SVM GFK TCA JDA ARTL JGSA MEDA GSL OURS 

V → I 38.20 42.70 73.80 64.90 70.20 72.20 66.75 74.70 72.46 78.89 

I → V 50.80 52.40 59.50 63.70 63.40 62.40 55.12 67.30 61.26 68.72 

M → V 31.96 38.17 34.18 32.55 38.20 36.67 30.46 36.01 39.35 40.65 

V → M 41.06 55.40 44.47 32.75 59.30 59.65 37.51 54.85 61.39 60.04 

Avg. 40.51 47.17 52.99 48.48 57.78 57.73 47.46 58.22 58.62 62.08 
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ajor limitation of these existing methods is that they are prone

o underfitting the target data, due to their incapability to simul-

aneously reduce the distribution divergence in both statistical and

eometric perspectives. UCGS avoids this limitation by considering

oth properties and using the complementarity of such two prop-

rties to discover more connections between domains. 

Fourthly, UCGS achieves better performance than JGSA. Al-

hough JGSA also explores the geometric adaptation, it is not

nough to exploit the geometric property just by measuring the

istance between the two projection matrices corresponding to

wo domains. UCGS achieves superior performance by learns a

omain-invariant graph from the perspective of sample-to-sample

o reduce geometric mismatch. Furthermore, UCGS unifies the

divergence minimization” and “classifier construction” into one 

odel. This enables UCGS much more robust than JGSA, which

eparates such two items independently. 

In a word, UCGS generally performs better than all the compar-

son methods. Therefore, we can obtain a robust adaptive classifier

y reducing the distribution divergence from the statistical and ge-

metric perspectives and combining the divergence minimization

nd classifier construction in a unified goal. 

.4. Parameter sensitivity analysis 

We conduct parameter sensitivity analysis on five different

ransfer tasks, i.e., “PIE1 → PIE2”, “PIE2 → PIE4”, “PIE3

 PIE5”, “V → I”, and “M → V”. Specifically, we run UCGS

ith varying values of λ, γ , and μ. From Fig. 1 (a)–(c), we can ob-

erve that transfer task “V → I” is a little sensitive to λ and μ,

ut it can still achieve steady performance in a wide range, i.e.

∈ [0.001, 0.5] and μ ∈ [0.001, 0.01]. The performance of trans-
er task “M → V” is stable for all parameters. The transfer task

PIE1 → PIE2“ and is a little sensitive to λ and μ, but we can

hoose λ ∈ [0.05, 0.1] and μ ∈ [0.5, 1] to ensure the stable per-

ormance. For “PIE2 → PIE4”, we can achieve stable performance

hen we choose λ ∈ [0.1, 0.5], γ ∈ [5, 10], and μ ∈ [0.5, 1]. Finally,

or “PIE3 → PIE5”, we can observe that it is a little sensitive to λ
nd μ. However, in the range of λ ∈ [0.05, 0.1] and μ ∈ [0.1, 1], the

ccuracy is still stable. Generally, the proposed UCGS can obtains

table performance in a relatively wide range. 

.5. Ablation analysis 

To better understand the proposed UCGS model, we further an-

lyze the efficacy of statistical and geometric adaptations for UCGS.

y setting γ or μ as 0, respectively, the ablation analysis of sta-

istical and geometric adaptations components can be discussed.

e run UCGS model on some transfer tasks with the correspond-

ng component is eliminated. From Table 5 , we can find that dif-

erent adaptation components have different effects on different

ransfer tasks. E.g., for transfer task PIE2 → PIE4, missing statisti-

al adaptation components, the accuracy degrades more seriously.

hat shows statistical adaptation has more influence on transfer

ask PIE2 → PIE4. For transfer task M → V, The lack of geometrical

daptation causes the accuracy to drop more significantly, which

eans geometric adaptation plays more important role in transfer

ask M → V. Although different adaptations components have dif-

erent effects, the most important observation we can get is that

he elimination of any component will degrade the accuracy of

CGS. Therefore, considering both statistical and geometric adap-

ations is really important for handling cross-domain problems. 
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Table 5 

Ablation analysis of UCGS. 

γ , μ PIE1 → PIE2 PIE2 → PIE4 PIE3 → PIE5 V → I M → V 

Missing D f,K ( J s , J t ) ( γ = 0 ) 64.64 77.35 57.96 78.85 40.58 

Missing G K ( D s , D t ) ( μ = 0 ) 50.71 78.64 48.04 77.53 35.23 

UCGS 63.13 80.84 58.27 78.89 40.65 

Fig. 1. Classification accuracy w.r.t. different values of λ, γ , and μ. 
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5. Conclusion 

In this paper, we proposed a unified cross-domain classifica-

tion method via geometric and statistical adaptations (UCGS) to

deal with cross-domain classification problems. UCGS integrates

the structural risk minimization, statistical adaptation based on

marginal and conditional MMD criterion, and geometric adapta-

tion based on the Nyström method into a unified work. An impor-

tant advantage of UCGS is that it takes full account of the cross-
omain differences in statistics and geometry, and more compre-

ensive connections can be discovered for knowledge transfer. Fur-

hermore, UCGS can directly build an adaptive classifier through

odeling “divergence minimization” and “classifier construction”

nto one optimal objective. we conducted extensive experiments

n different transfer tasks to demonstrate that UCGS is generally

obust to the distribution mismatch and can improve the classifica-

ion accuracy for cross-domain problem. As a future direction, we

ote that the usage of pseudo target labels to calculate the con-

itional MMD distance caused UCGS to perform poorly in some

asks. We will study how to use pseudo target labels more rea-

onably to further improve the transfer ability of the classifier. 
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